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Abstract

In this paper, some nonsmooth generalized convex functions called uniform K — (Fy, p) — convex function, uniform K — (F, p) —
pseudoconvex function, uniform K — (Fy, p) — quasiconvex function are defined using K — directional derivative and K — subdifferential.
Nonsmooth multi-objective semi-infinite programming involving these generalized convex functions is researched, some sufficient

optimality conditions are obtained.
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1 Introduction

The convexity theory plays an important role in many
aspects in mathematical programming. In recent years, to
relax convexity assumption involved in sufficient
conditions for optimality or duality theorems, various
generalizations of convex functions have appeared in the
literature. Hanson and Mond introduced type I and type II
function[1]. Reuda and Hanson extended type I function
and obtained pseudo type I and quasi type I function [2].
Bector and Singh introduced b — convex function [3].
Bector, Suneja and Cupta extended b — convex function
and defined univex function [4]. Mishra discussed the
optimality and duality for multi-objective programming
with generalized univexity [5]. Preda introduced (Fy, p) —
convex function as extension of F — convex function and p
— convex function [6-8]. Aghezaf and Hachimi discussed
the sufficiency and duality for multi-objective

programming involving generalized (Fy, p) — convexity [9].

In this paper, we introduce a new classes of generalized
convex functions, that is, uniform K — (Fp, p) — convex
function, uniform K — (Fy, p) — pseudoconvex function,
uniform K — (Fy, p) — quasiconvex function, etc. Then we
consider nonsmooth  multi-objective  semi-infinite
programming involving these generalized convex
functions and obtain some sufficient optimality conditions.

2 Definitions

Throughout this paper, let R" be the n— dimensional
Euclidean space and R" be its non-negative orthat. Now
we consider the following multi-objective semi-infinite
programming problem:
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min £ () = (£,00, £,(0s.n . (X))
st.g(x,u)<0,xe X,ueU '

(VP){

where X f:X >RP,

g:XxU —R", U cR is an infinite parameter set. Let

is an open subset of R" ,

X% ={x|g(x,u)<0,xe X,ueU}A={i|g(x,u') <0,
xe X,u'eU}, I(x)={ilg(x,u') <0,x eX,u
eU}, U '={u'eU|g(xu)<0,xeX,iecA} is any

countable subset of U , A={u;|u; 20|, jeA, there is
only finite z; such that x; = 0}.

Notations. If X,y € R", then x<y < x <y, i=12,,

n and there exists at least one i, €{L2,---,n} such that
X, <Y i X<y X <y,i=12--n

Definition 1 [10]: Let K(;,-) is a local cone approximation,
the function fY(x,): X >R with
£X(x;y) =inf{& e R| (Y, &) e K(epif, (x, (X)), y e RM} is called
K —directional derivative of f at x.

Definition 2 [10]: A function f:X — R is called K —

subdifferentiable at x if there exists a convex compact set
0" f(x) such that f*(x,y)= max < £ y>vyeR",

where 0" f(x)={x e X" |<y, X >< f“(x;y),vy eR"}
is called K — subdifferential of f at x.

Definition 3: A functional F: X xX xR" >R (X cR")
is called sublinear with respect to the third variable, if for
any X, X, € X:

() Fx. %3 +8,) SF (X, %58) + F(X,X%,:8,), Va8, € R";
(i) F(x,X%,;ra)=rF(x,x,;a),VreR,r>0,aeR".
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Definition 4: x" < X° is called an efficient solution for
(VP) if and only if there exists no xc X° such that
f(x)<f(x).

Definition 5: x" = X° is called a weak efficient solution
for (VP) if and only if there exists no x = X° such that
f(xX) < f(x).

In the following definitions, we suppose C —R" is a
nonempty set, x,eC , f:C—R is a local Lipschitz
function at x, , F:CxCxR" —R is sublinear with
respect to the third variable, ¢:R—>R,b:CxCx[0,1]
>R, JLn;b(x,xo;ﬂ)=b(x,xo) , d(,) is a pseudo-

metric in R". In [9], Elster and Thierfelder defined K —

directional derivative and K — subdifferential and pointed
out that K — subdifferential is most generalized. Now we
will define some new generalized convex functions using
K —directional derivative and K —subdifferential.

Definition 6: A function f :C — R is said to be uniform

K —(F,, p)—convexat x, withrespectto F,¢,b,d, if for
all xeC, there exists p € R such that

bx, X)L (X) = f (%)= F (X, %,; &) +

pd?(x,y),VE e d" f(x,).

Definition 7: A function f :C — R is said to be strictly
uniform K —(F,p)— convex at x, with respect to

F,¢.b,d, if for all xeC,x= x,, there exists p € R such
that

b(x, )@l f (X) = f (%) > F (X, %,;8) +
pd?(X,%,), V& € 0" f ().

Definition 8: A function f :C — R is said to be uniform
K —(F,,p)— pseudoconvex at x, with respect to
F.¢.b,d,ifforall xeC, there exists p e R such that

b(X, %, )AL f (X) - F(x,)]<0=,
F(X X; E) + pd?(X,y) <0,VE €0 f(X,).

Definition 9: A function f :C — R is said to be strictly
uniform K —(F,, p) —pseudoconvex at x, with respect to
F,¢,b,d, if forall xeC,x# x,, there exists p e R such
that:

b(X, %, )AL f (X) - F(x,)]<0=,
F(X X E) + pd?(X,y) <0,VE €0 f(X,) .

Definition 10: A function f :C — R issaid to be uniform

P - P X - .
K —(F,, p) — quasiconvex at x, withrespectto F,g,b,d, X AF(XX:&)+D A pd*(x,x) <0.
i=1 i=1

if for all xeC, there exists p € R such that:
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b(x,%)gL f (X) - f(x,)]<0=,
F(X X; E)+ pd? (X, y) <0,VE € 0" f(x,).
Definition 11: A function f :C — R is said to be weak

uniform K —(F,, p) — quasiconvex at x, with respect to
F.¢,b,d,if forall xeC, there exists p e R such that:

b(x, X)L f (X) — (%) <0=,
F(X X; &)+ pd?(X,y) £0,VE € 0" f(x,).

3 Sufficient optimality conditions

In this section, we obtain some sufficient conditions for a
feasible x" to be efficient or weak efficient for (VP)in the
form of the following theorems.

Theorem 1: Assume that x" e X°, if for any xe X°,

there exist F,d,4,,0,b,,p, €R’, p,eR" A" >0,

p
DA =L 4 €A, jel(x), suchthat:
i=1

(i) f,(x)(=12,--,p) isuniformK - (F, , p!) — convex
at x*;
(i) g(x,u’)(je (X)) isuniformK —(F, , p}) — convex
at x
p . .
(i) 0e Y A" f,(x)+ D wo"g(x',u’), vul eU”;
i=1 jel ()
(iv) <0=¢(x)<0,4(0)=0,a<0= ¢,(a) <0,
b (x,X")>0,b,(x,x)>0;
p . .
M D AP+ D upl20.
i=1 jel(x")
Then X" is an efficient solution for (VP).

Proof: Suppose that X is not an efficient solution for
(VP), then there exists X e X and at least one i €
{L,2,---, p} such that:

f, ()~ 1, (x)<0,
f.(X)— f,(X)<0,i =i,
By hypothesis (iv), we have:
b (% X )AL T, () — f,(<)]<0,i =1,2,+-, p.

and there exists at least one inequality which is a strict
inequality.
Since 4 >0,i=12,--, p, we have

@



COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 270-274

By hypothesis (iii), there exists & €0 f,(x"),i =1,2,
-, pand 77, €d“g(x’,u’), j e I(X") such that:

p *

DA

i=1

&+ 2 #m =0

jel (<)

SO:

- * p * * * *
F{X’X D AG DL M,
i=1

jel(x)

j:F(i,x*;O)zo. 2)

Observe that g(x,u’) <0=g(x",u’), j € 1(X"), we have:
g(x,u)—g(x",u') <0, je I(X).
By hypothesis (iv), we have:
b, (%, X )¢, [g(x u") ~ g(x",u)] O, j € 1(xX).
By hypothesis (ii), we get
F(x,X'5m,)+pld?(x,x7) <0,V € 04g(x",u’).
since 4; >0, we have:

> mFOGn)+ X el (xx) <0. ©)

jel (<) jel(x)

Adding Equations (1) and (3), using the sublinearity
of F, we can obtain:
]+

— P
F(X,X DG D mm
i=1
]dz(i,x*)<o,

jel (<)

by hypothesis (v), we have

p ) L
AP+ D uips

i=1 jel (<)

Api+ Y, wpl20.

p
i=1 jel (<)

SO

- * p * * * *
F(X’X D AE D
i=1

jel (<)

j<o,

which contradicts Equation (2). Therefore, X" is an
efficient solution for (VP).

Theorem 2: Assume that X" € X°, if forany x e X°,

there exist F,¢,,4,,b,b,,p, €R”, p,eR", 1" >0,
p

YA=1, K EN, je I(x") , such that:

i=1

@ f.()(=12,---, p) isuniform K —(Fbl,pli)—convex

at x';
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(i) g(x,u")(j e 1(x")) is uniform K —(th,pi)— convex
at x*;
P . .
(i) 0e D A" f(x)+ D wma“g(x',u'), vu' eU”;
i=1 jel ()
(iv) @ <0=> ¢ (a)<0,4(0)=0,a<0=> ¢,() <O,
b (x,x")>0,b,(x,x)>0;
: _ .
W) AP+ D 1 p)20.
i=1 jel ()
Then x"is a weak efficient solution for (VP).
Theorem 3: Assume that X" € X°, if forany xe X°,
there exist F,¢,4,,b,,b,, 0, eR”, p, eR", 1" >0,

p
DA =L 4 €A, jel(x), suchthat:

i=1
(i) f;()(=12,---, p) isstrictly uniform K —(F, ,pli)—
pseudoconvex at X" ;
(i) g(x,u")(j e 1(x")) is uniform K —(F, , p’) - quasi
convex at x;
> @ g u'), vul eU”;
jel (<)
(iv) <0=¢(x)<0,4(0)=0,a<0= ¢,(a) <0,
b (x,X") >0,b,(x,x)>0;
P _ .
W) AP+ D 1 p) 20
i=1 jel ()
Then x"is an efficient solution for (VP).

(ii) oeiﬂ;‘aK f(x)+

Theorem 4: Assume that X" e X°, if forany x e X°,
there exist F,¢,4,,b,b,,p, €R”, p,eR", 1" >0,

P
YA =1, y: eA, jel(x), such that:

) =12,
pseudoconvex at X" ;
(i) g(xu)(jel(x))

quasiconvex at x";

p) is uniform K-(F,,p)-

is uniform K—(F,,p')-

> e g(x,ul), vul eU’;
jel ()
(iv) <0=¢(x)<0,4(0)=0,a<0= ¢,(a) <0,
b (x,X") >0,b,(x,x)>0;
LI .
M) D AP+ D upl20.
i1 Jr ()

Then x"is a weak efficient solution for (VP).

(iii) oe_Zp:ﬁ,.*aK f.(x)+

Theorem 5: Assume that x e X°, if for any xe X°,

there exist F,d,4,,b,b,, 0 €R", p,eR", 1" >0,
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p
MA=1, # €A, jel(x) and 4 notall is zero such
i=1

that:

@H  fixi=12--,
quasiconvex at X" ;
(i) g(x,u’)(je (X)) is strictly uniform K —(F, , p') -

p) is uniform K-(F,,p')-

pseudoconvex at X" ;

Z u;GKg(X*,uj), vul eU”;
e

(iv) a<0=¢ () <0,¢1](0()):0,aS0:> ¢, (a) £0,

b, (x,X") >0,b,(x,x)>0;

) Z:i.*pi + _IZ(:*)ﬂjpzj 0.

Then x"isan ;fficient solution for (VP).

(iii) O e Zp:)pl*aK f(xX)+

Theorem 6: Assume that x e X°, if for any xe X°,

there exist F,d,4,,0,b,,p, R’ p,eR", 1" >0,

p
DA =1 K EN, je I(x") and w not all is zero such
i=1
that:
(i f,(x)3i=12,--,p) is weak uniform K —(Fbl,pli)—
quasiconvex at X" ;
(i) g(x,u”)(je (X)) isstrictly uniform K —(F, , p!) -
pseudoconvex at X" ;
P . .
(i) 0e D A" fi(x)+ D>, md“g(x',u'), vu' eU”;
i=1 i<l (<)
(iv) a<0=¢(x)<0,4(0)=0,0 <0= ¢,(x) <0,
b, (x,X") >0,b,(x,x)>0;

P, L
V) AP+ D 1 p) 20
i=1 Jr ()
Then X" is a weak efficient solution for (VP).
Theorem 7: Assume that x e X°, if for any xe X°,
there exist F,¢,,4,,b,,b,, 0, €R", p,eR", 1" >0,

p
YA =1, y: e A, jel(x) such that

i=1

ol

at x';

A fij(x) is uniform K —(F, , p,) —pseudoconvex
=1
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